If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-24x-5040=0
a = 2; b = -24; c = -5040;
Δ = b2-4ac
Δ = -242-4·2·(-5040)
Δ = 40896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40896}=\sqrt{576*71}=\sqrt{576}*\sqrt{71}=24\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24\sqrt{71}}{2*2}=\frac{24-24\sqrt{71}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24\sqrt{71}}{2*2}=\frac{24+24\sqrt{71}}{4} $
| 26x+15=180 | | (1)/(2)*h(18)=54 | | 3u−8=4 | | 200+6m=500-4m | | 3g-14-20g=-18g-20 | | -6u-4=3-7u-1 | | (x+37)(x+67)=90 | | 25p2−40p+16=0 | | 5x–2=3x+7 | | 32+77=w+32 | | 6x+19+x+5+2x+3=180 | | 2(n+3)-5=15 | | F=9c+160/5 | | 32+77=w | | 174=11-x | | x+4(4x-16)=21 | | 100=6b+4 | | k+3.91=26 | | 3.4c-8c+5=-6+7-12c | | k+3.91=62 | | 42=u/3+15 | | 1+9-x=5 | | c/2-2=-1 | | 4+81=81+f | | x–8=–6 | | 4x-3+9x-6=15x-7 | | 7c–2=6+6c | | -3.7n+5=38.3 | | 2x+5x-11=-45 | | m+8=-9-7m-7 | | 8s=9s+2 | | p*70=7 |